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To meet the increased need for facilities during mobiliza-
tion, new construction technologies have been developed.
However, conventional design procedures (e.g., for ultimate
loads) may not apply to these structures.

In this report, the ultimate snow and wind loads are
determined for two sizes of a corrugated-steel, barrel-type
shell building by using numerical and experimental methods.
Local buckling is shown to govern the ultimate loading of
these structures, through the formation of collapsing
mechanisms. The critical positive and negative moment
fields under which hinges are formed determine the bounds
to the critical loads which will create the collapsing
mechanisms. The lower bounds of the ultimate snow load
for the intermediate (50 ft wide by 18 ft high) and large

(72 t wide by 26 ft high) structures were found to be 35 DT'

pst and 14 psf, respectively. The ultimate wind velocities C
for the same intermediate and large structures were 87 to

110 mph and 60 to 74 mph, respectively. Although E LECTE g
methods and assumptions used in the analysis are con- DEC 2 1 1987 g
sidered conservative, it does indicate that with respect to .
wind loading, some existing structures may be operating

at or near ultimate strength. OO
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FOREWORD

This research was performed for the Office of the Chief of Engineers (OCE) under
Project 4A162731AT41, "Military Facilities Engineering Technology"; Task Area E,
"Military Engineering"; Work Unit 079, "Rapidly Erectable Lightweight Mobilization
Structures."

The research was performed by the Engineering and Materials Division (EM), U.S.
Army Construction Engineering Research Laboratory (USA-CERL). The OCE Technical
Monitor was Mr. Austin Owen (DAEN-ZCM). USA-CERL personnel directly involved in
the study were Mr. Steven Sweeney and Dr. Anthony Kao, Team Leader of the
Construction and Maintenence Team. Dr, D. Briassoulis is a Visiting Assistant Professor
at the University of Illinois, Urbana.

Dr. Robert F. Quattrone is Chief of EM. COL Norman C. Hintz is Commander and
Director of USA-CERL, and Dr. L. R. Shaffer is Technical Director.
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DETERMINATION OF THE ULTIMATE LOADS FOR CORRUGATED-
STEEL, BARREL-TYPE SHELL STRUCTURES

1 INTRODUCTION

Background

Mobilization planners have identified that a serious shortage of facilities would
occur in the event of full mobilization. Based on the 1980 report "Corps Mobilization
Capabilities, Requirements, and Planning,"' peak continental United States (CONUS)
troop strength would occur as early as day M + 28. The need therefore exists to identify
construction technologies which can be used to satisfy mobilization.

One solution to this problem is using buildings constructed on-site by special
building systems. One such system, the K-Span multipurpose building system, is being
evaluated as a rapidly erectable lightweight mobilization structure (RELMS). The system
consists of lightweight, cold-rolled steel channels formed on-site from coil stock into
circular arch shapes of various widths and heights. Details of the construction and
materials are given in K-Span's Metal Building Data Manual.” A demonstration of the
system by the machine manufacturer has shown that a 12-man crew can construct 5,000
sq ft* of bare structure (no utilities) in 12 hours.

Because of the unique configuration of the cold-rolled arch sections and the
seaming process used to produce the building shell, conventional design procedures based
on standard specifications may not be appropriate. A more specific method for
determining the load bearing capabilities is required.

Objective

The objective of this study was to determine the collapse loads of corrugated-steel
barrel-type shells (K-Span buildings), under snow and wind loading conditions. The
researchers studied the effect of the geometry of the structure and of localized nonlin-
earities (i.e., local buckiing and yielding) on the mode of failure and the corresponding
collapse loads.

Approach

Two buildings were studied, one medium-sized (50 ft wide by 18 ft high) and one
large (72 ft wide by 26 ft high). These were assumed to be long shells so that the effects
of the end walls® could be ignored." (The behavior of barrel-type shells depends very

'U.S. Army Engineer Studies Center, "Corps Mobilization Capabilities, Requirements,
and Planning"” (Corps of Engineers, March 1980).

’K-Span, Metal Building Data Manual (G. A. Kundson Ltd., Washington, DC).

*Metric conversion factors are provided on p 49.

’K -Span.

“M. N. El-Atrouzy and G. Abdel-Sayed, "Prebuckling Analysis of Orthotropic Barrel-
Shells," American Society of Civil Engineers Proceedings, Journal of the Structural
Division, Vol 104, ST11 (1978), pp 1775-1786.
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much on the aspect ratio, length/radius.®) This assumption makes it possible to use
simpler models for numerical nonlinear analysis.

Expressions for wind and snow loading conditions were taken from American
National Standards Institute (ANSI) Standard A58.1% (Chapter 2). Equivalent orthotropic
properties were developed for the structures, along with two finite element models, one
orthotropic and one detailed. In a comparative linear elastic analysis, the detailed model
was used to verify the orthotropic model (Chapter 3). In a preliminary analysis, the
orthotropic model was used to determine the overall buckling behavior of the structures
and to find out if local buckling and other localized nonlinearities would have a
significant effect on their strength (Chapter 4). In Chapter 5, sections of the structures
were treated as simple beams, and the detailed finite element model was used to
determine the upper and lower bounds of the critical moments which will result in
localized nonlinearities. These results were compared to those of full-scale tests
performed on the same sections. (The full-scale tests will be discussed in detail in
another report.) An arch section of the structure under a line load was also analyzed
numerically with the orthotropic model. The critical moments obtained earlier were
used to determine the formation of hinges and the corresponding collapse mechanism.
These results were verified by full-scale tests of the same arch section. Finally in
Chapter 6, collapse mechanisms and the corresponding ultimate loads were determined.
The critical moments obtained earlier were the basis for the critical bounds to the
ultimate wind and snow loads.

The numerical analyses carried out in the course of this study were performed on
the Harris-800 computer at the Department of Civil Engineering of the University of
[llinois (Ul). [n some cases, the Ul CDC-175 mainframe system of the Ul was also used.
The two finite element analysis programs used were POLO-FINITE’ and Automatic
Dynamic Incremental Nonlinear Analysis (ADINA).2

Scope

In the present study, only two structures were analyzed; the largest available K-
Span structure and an intermediate one. It is assumed that the factors governing the
collapse of these buildings will apply to K-Span buildings of any size. Also, the results
obtained are applicable only to the particular corrugation profile that was analyzed.®

Mode of Technology Transfer

Results of this study are to be transferred to Corps of Engineers district offices
and other Army installations through Technology Transfer Test Bed programs.

°D. P. Billington, Thin Shell Concrete Structures, 2nd ed. (McGraw-Hill, NY, 1982).
®ANS! Standard A58.1, Minimum Design Loads for Buildings and Other Structures
(American National Standards Institute, Inc., NY, 1982).

’L. A. Lopez, "FINITE: An Approach to Structural Mechanics System," International
Journal of Numerical Methods in Engineering, Vol 11 (1977), pp 851-866.

*K.J. Bathe, A Finite Element Program for Automatic Dynamic Incremental Nonlinear
Analysis, Report 82448.1 (Acoustics and Vibration Laboratory, Department of Mechan-
ical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 1975 [rev.
1978)).

'K-Span.
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Snow Loading

Two cases of snow loading are considered: snow not combined with wind (balanced
or symmetric), and snow combined with wind (unbalanced or nonsymmetric). The snow
loading on sloped-roof structures is given by ANSI for « < 70 degrees (Figure 1), by:

ps = CsP¢ [Eq 2]

where C_ is the roof slope factor, given by Figure 8 of ANSI Standard A58.1 for warm
and cold roofs, as a function of the roof slope. The flat-roof snow load P¢ is given by:

Pg = 0.7CeCtng [Eq 3]

where Ce = exposure factor

C, = thermal factor
I = importance factor
pg = ground snow load.

C_ was assumed to be 1.2 for the balanced snow loading and 0.80 for the unbalanced snow
loading.!' The structure was also assumed to be unheated, with C, = 1.2, the importance
factor was assumed to be 1, and the reference ground snow load was taken as p_ = 100
psf. The unbalanced snow loading distribution for curved roofs is determine% from
Figure 10 of ANSI Standard A58.1.

The snow load analyses in this report are concerned with determining a structure's

reaction to the ground snow load. This load is expressed as a ratio of the actual ground
snow load to the reference load of 100 psf.

1ZANSI A58.1.

Figure 1. Geometric characteristics of the barrel shell.
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3 MODELING THE CORRUGATED SHELL STRUCTURE

In this chapter two models are developed. The first is an orthotropic finite element
model of the corrugated shell structure. This model is used in following chapters for
nonlinear analysis for large deformations. Localized nonlinearities (local buckling or
yielding) cannot be considered in a nonlinear analysis using this model. Therefore, the
second model, a detailed finite element model of the "details" of the corrugated panel, is
developed. This model will be used later to analyze the typical corrugated panel for
localized nonlinearities. The detailed mode! is used in the present chapter, only to test
the orthotropic model through a comparative linear elastic analysis.

Structures Being Modeled

Two buildings were selected for this analysis. One is a large building, 72 ft wide by
26 ft high, constructed using material having a thickness of 0.035 in. This building, since
it is the largest available example of the category of structures under investigation, was
selected to determine the limiting buckling behavior of this type of structure. The
second structure is an intermediate sized building 50 by 18 ft of the same thickness as
the large one. This is considered to be a representative size for this type of building.'?

Equivalent Orthotropic Properties

To analyze a corrugated shell structure as an equivalent orthotropic shell, one must
use the equivalent orthotropic properties of the corrugated sheet. Figure 2 presents the
geometric characteristics of a typical section of the curved panel used in the
construction of the K-Span structures. This section is not a standard corrugated profile
(e.g., tangent-and-arc), so the equivalent orthotropic properties were derived in the
course of this study. The derivation of the equivalent orthotropic properties of the
typical section was based on the approach used by Briassoulis for standard corrugated
profiles.’* That approach is based on Castigliano's second theorem and has been
confirmed with a finite element analysis to yield equivalent orthotropic properties which,
in some cases, improve the older expressions found in the literature. The real curved
panel has, in addition, some minor corrugations which run across the width of the flange
and web sections of the panel. These minor corrugations were not included in the
derivation of the equivalent orthotropic properties of the curved panel. Their effect is
studied later in this report. The orthotropic model is therefore based on the idealized,
typical section of tre panel shown in Figure 3 (minor corrugations ignored, ridge assumed
symmetric), which, nevertheless, is a type of nonstandard corrugated profile.

The derived equivalent orthotropic rigidities of the corrugated profile of Figure 2
are presented in Table 1. As expected, the major effect of the corrugations is the
decrease of the meridional extensional rigidity and the increase of the circumferential
flexural rigidity.

YK -Span.

A *D. Briassoulis, "Analysis of the Behavior of Steel Silos Under Wind Loading," Ph.D.

F Dissertation, University of Illinois, Urbana, 1985; D. Briassoulis, "Equivalent QOrtho-
tropic Properties of Corrugated Sheets," International Journal of Computers and Struc-

tures, Vol 23, No. 2 (1985), pp 129-138.
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Finite Flement Models

Two models of the 72 by 26 ft building were employed. An orthotropic model
(Figure 4) and a detailed model (Figure 5) of an isolated strip of the structure were both
obtained by imposing conditions of symmetry according to the assumption of a long
shell. That is, the typical strip of the structure under consideration is assumed to be
away from the end walls and to represent the buckling behavior of a corresponding long
structure (1./R > 4).

The 9 node, orthotropic, Lagrangian degenerated shell element - was used with the
orthotropic model. Fourteer oloments were used as shown in Figure 4. Reduced integra-
tion was employed throughou! this study becauwse full integration results in locking
mechanisms when used with very thin elements, producing overstiff structures.”® Zero
energy modes, which constitute the most serious problem when reduced integration is
emploved, did not arise in any of the analyses of this study, probably because of the many
constraints present at the boundaries of the model (synimetry lines and fixed bases).

The detaiied model was built using thirty 16-node Lagrangian degenerated elements
using the program ADINA. - The seam between the two panels was assumed to be
symmetric (Figure 5). The behavier of the seam was approximated by 4-node truss
elements hecause of problems encountered in using compatible beam elements (probably
due to the extreme thickness tu length ratin of the ridge-beam elements).

The detailed model was considered to be necessary in this phase for testing the
performance of the orthotropic model and was used only with the large 72 by 26 ft
building in a linear elastic comparative analysis. This analysis was done under balanced
snow loading; thus, due to symmetry, it was only necessary to model half the arch.

Comparing the Two Models

Figure 6 presents the deformation patterns obtained from the orthotropic and the
detaiied models, under u balanced snow loading p, = 90 psf. The response of the
equivalent orthotropic model seems to be very good, resulting in a midspan deflection of
6.19 in. versus 6.32 in. obtained by the detailed model. This 2 percent difference is
probabiy due to several factors: the two meshes are different; several assumptions were
made in the detailed model (such as the use of an average normal vector at the junetion
of the two 16-node elements (Figure 5); and it was difficult to impose conditions of
symmetry in the case where the rotational nodal unit vectors did not correspond to the
directions of the global coordinates.'”

For vertical reaction at the base of the structure, the orthotropic model gave 285
Ib/in. and the detailed model gave 286 lb/in., compared to the analytically obtained value
of 283 lb/in. The typical stress distribution in the cross section at the base region of the
detailed model is shown in Figure 7. The corrugated profile actually behaves as a one- !

“3D. Briassoulis, Ph.D. dissertation; H. Parish, "A Critical Survey of the Nine-Node
* Degenerated Sheil Element With Special Emphasis on Thin Shell Application and
A Reduced Integration,” Computer Methods in Applied Mechanical Engineering, Vol 20
(1979), pp 323-350; L. A. [.opez.
‘°H. Parish.
n '7K. J. Bathe.
o ‘7K. J. Bathe.
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way beam section, with linear distribution of stre<s and strain. Note that this behavior is
the basis for the derivation of the circumferential flexural rigidity of the orthotropic
model (Table 1).

The fiber stress of the section can be obtained by using the equivalent orthotropic
properties of Table 1, as follows:

PN

[Eq 4]

where ¢ = projected length of the panel profile

N = circumferential stress resultant

(o]

E = modules of elasticity of the material
" M _ = circumferential moment
y = distance from the neutral axis to the fiber (Figure 2)
t = thickness of sheet
£ = developed length of the panel profile

B0 = circumferential bending rigidity as defined in Table 1.

- o

The stresses at the base of the structure obtained by Equation 4 were found to be in
a good agreement with the results of the detailed model. Given the good agreement
between the responses obtained from the two models, the orthotropic model, which uses
the equivalent properties presented in Table 1, is verified.
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Figure 2. Dimensions of corrugated profile of a typical curved panel
(from K-Span, Metal Building Data Manual [G. A. Knudson, Ltd.,
Washington, DCJ).
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Figure 3. Cross section of an arch panel showing minor corrugations
(from K-Span, Metal Buildings Data Manual [G. A. Knudson,
Ltd., Washington, DC]).
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Figure 4. Finite element mesh used for the orthotropic model with 9-node

Lagrangian elements.
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Figure 5. Section of the detailed model used with 16-node Lagrangian
elements.
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Figure 6. Deformation patterns of the 72 by 26 ft building obtained by the
orthotropic and the detailed models.

;:";. Figure 7. Typical stress distribution in the cross section at the base of the
,ﬁ},‘ structure obtained by the detailed model.
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4 OVERALL BUCKLING AND LOCALIZED NONLINEARITIES

The first phase of the present investigation consists of an analysis of the overall
buckling behavior of the two structures under wind and snow loads using the orthotropic
model. This model is good as long as localized nonlinearities (such as yielding or local
buckling) are not present, or if present do not interfere with the geometry and stiffness
of the profile. Therefore, local buckling and material nonlinearities are not considered in
this analysis. The orthotropic model is much more economical (has fewer degrees of
freedom) than the detailed one; thus, it was preferred for this phase, when it was not
known how important localized nonlinear effects would be. However, ignoring these
effects at this phase is not only a matter of economy. Better insight into the overall
buckling behavior of the structure is possible when it is isolated from localized nonlinear
effects. But even without localized nonlinearities, the orthotropic model is still an
approximation to the real structure, since shell-type behavior within the panels is not
taken into consideration.

However, once this analysis for large deformations is completed for a particular
load, the results are examined to see what role localized effects might play. It is
therefore determined whether overall buckling or local factors are the dominant causes
of collapse of these shell structures.

Large Building

Balanced Snow Load

Figure 8 shows the nonlinear behavior (load versus deflection) of the large building,
obtained under balanced snow loading, and expressed with respect to the reference snow
load p, = 90 psf. This corresponds to a ground snow load of 100 psf. The snow load was
increased to 180 psf, but buckling was still not reached, and the analysis was not
continued beyond that point.

When localized nonlinear effects are neglected and the base of the structure is
assumed to remain fixed, a symmetric mode of buckling is expected.'® However, the
corresponding buckling load is unrealistically high. Actually, very high stress resultants
are built up at rather low load levels, indicating that localized nonlinear effects (local
buckling and/or yielding) should be expected to occur well before a load of 180 psf is
reached. Yielding (assuming a yield stress of 50 ksi) is reached at the ridge (seam), at
the base sections of the structure at a load of 0.63 p.. A hinged base is therefore a more
realistic assumption for the nonlinear analysis of this case when localized nonlinearities,
other than the initial assumption of a hinged base, are not included in the analysis.

According to the expressions given by Timoshenko ard Gere, buckling of this type
of structure under uniform pressure, with the base fixed, will occur at a load of 172 psf.
If one assumes a hinged base, then the buckling load under uniform pressure (antisym-
metric mode) drops dramatically to 72 psf. Figure 9, showing the load versus deflection
curve, confirms this expected behavior, indicating that the buckling load for the antisym-
metric mode under balanced snow load with the base assumed hinged, drops down to
about 73 psf.

98, D. Timoshenko and J. M. Gere, Theory of Elastic Stability, 2nd ed. (McGraw-Hill,
NY, 1961).
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Unbalanced Snow l.oad

Figure 10 presents the nonlinear behavior (load versus deflection) of the large
building under unbalanced snow loading. One can see that the structure has not reached
the limit point up to a load of 2.2 times the reference snow load of 100 psf ground snow
load. The corresponding midspan deflection at the load of 2.2 p. is 70 in. The stress
resultants and moments developed in the structural system indicate that localized
nonlinear effects are certainly expected at much lower load levels. For example, the top
fibers of the corrugated profile at the base region of the nonloaded part of the structure
reached vield stress (assumed to be 50 ksi) at a load of only 0.4 P,

Wind lL.oad

As can pe seen from Figure 11, the wind loading did not introduce any significant
nonlinear behavior in the structure up to 2.5 times the reference wind load of 90 mph.
The large tensile wind load acting on the central and leeward sections of the building
appears to stiffen the structure against possible oversll buckling. In addition, the
moments developed in the structure are not as significant as with snow load. Since the
stress resultants developed in the structural system are relatively low, plasticity effects
are not expected to be a problem.

Even for the large structure, the wind loading analysis indicated that overall
buckling is not expected. Thus, given that the stiffness of a cylindrical shell increases
with the decrease of the radius, using the orthotropic model for smaller structures would
not result in any additional useful information. That is, this type of structure is
considered safe against wind loading as far as overall buckling and material nonlinearities
are concerned. The effects of local buckling under wind loading are discussed later.

Intermediate Building
Balanced Snow Load

Figure 12 presents the nonlinear behavior (load versus deflection) of the inter-
mediate cylindrical shell structure under balanced snow loading. The base is assumed to
be fixed. The deflections are much smaller than the corresponding deflections of the
large building, and for loads up to 270 psf the limit load is not reached. The analysis was
not continued beyond that point, since localized nonlinearities are expected to occur at
much lower load levels. At the base of the structure, yielding at the extreme fibers of
the corrugated profile (seam) is expected to be reached at a load of only 1.4 Pp- As in
the case of the large building, the more realistic assumption of a hinged base was
investigated.

Antisymmetric buckling under the balanced snow load is presented in the load
versus deflection curve in Figure 13. [t shows a significant drop in the buckling load, but
that load is still much higher than the corresponding buckling load of the large building.
The limit load is reached at a load of 2.8 times the reference load, indicating that
localized nonlinearities are expected to play a deterministic role in the buckling behavior
of this structure under a balanced snow load.

{ - nhalanced Snow [.oad

The nonlinear behavior of the intermediate building under unbalanced snow loading
15 shown in the {nad versus deflection curve of Figure 14. The limit load was not reached
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b up to a load of 3.1 times the reference unbalanced snow load. The seam of the corru-
b3 gated profile yields at the base of the nonloaded half of the shell at the reference load.
¢ As expected, this is a significantly higher load than the corresponding load of the large
A building.
e
N Localized Nonlinearities
»
‘4
2 The overall buckling analysis of the large and intermediate buiidings reveals that,
™ in general, this type of structure will not collapse in an overall buckling mode. Instead,
, localized failures will cause collapse. This is because high, local, circumferential stress
':. resultants develop at rather low load levels. It is important to note that the flexural
y term of Equation 4 is the main source of these stresses in the corrugated profile. High
- moments are developed along the circumference of the shell as a result of the high
) flexural rigidity of the corrugated sheets.
. As expected, the large buildirg shows a tendency to develop muech higher circum-
. ferential bending moments than the intermediate building, for the same loading level.
1" This means that the larger the building the more sensitive it is to overall buckling and,
K, especially, to localized nonlinear effects. Since the large building is the largest
M currently constructed, one should expect that localized nonlinearities also govern the
ultimate load capacity of any size building of this type.
" In particular, the results of the overall buckling analysis provide a preliminary
. estimate of the expected importance of the localized nonlinearities, as summarized
- below.
v
¢ :
Wind Load
: The overall buckling analysis showed that this type of structure will not collapse
L under wind loading. The significant moments developed however, might result in local
o buckling (especially in the case of the large building) and, eventually, in the formation of
" some type of a collapse mechanism. Material nonlinearities are not expected to arise in
i this cas..
e
0 Balanced Snow Load—-Large Building
.
;" In the case of balanced snow loading, the buckling load of the large building for the
: ‘ antisymmetric mode (hinged based assumed) is much lower than that of the intermediate
building. However, overall buckling in an antisymmetric mode is possible only if hinges
.’, are formed at the base of the building. Such hinges could be caused by local buckling or
- yielding at a load below the corresponding limit load. This limit load was obtained
o earlier by assuming the base was hinged but ignoring other nonlinearities (see, for
& example, Figure 9). The overall buckling analysis shows that yielding at the fixed base is
' reached at a lower load than the corresponding limit load. The structure will then
e collapse at the limit load (antisymmetric mode) or, at a lower load, if a collapse
mechanism is created due to local buckling. This last case can occur if at least two more
o hinges are formed in regions other than the base regions of the structure. It is therefore
o, certain that overall buckling will not govern the collapse of a shell-type building of any
Y size. Thus, the limit load corresponding to the antisymmetric (hinged base) mode of the
‘ large building is an upper bound on the balanced snow load that will cause collapse. To
* determine the actual balanced snow load governing the collapse of the large building,
" localized nonlinear effects must be considered.
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Unbalanced Snow Load—Large Building;
All Snow Loading—Intermediate Building

The buckling behavior of the large building under unbalanced snow loading and of
smaller buildings under all snow loading cases seems to depend strongly on the type of
nonlinearities which may develop and the possible interaction of these local effects with
the overall nonlinear behavior of the structure. Since in all these cases no significant
nonlinear behavior was ohserved even under high loads, it is more probable that the
governing collapse load will be related only to the development of a collapse mechanism
caused by localized nonlinear effects.

[t is evident, then, that local buckling and, in some cases, yielding are major
considerations in the determination of the ultimate loads of these structures. However,
one cannot predict the corresponding collapse loads of these cases based on the
information obtained by the preliminary nonlinear analysis, which used the equivalent
orthotropic model. It is therefore necessary to investigate in more detail the probable
bending behavior of the typical corrugated panel, since bending is the basic mechanism
by which localized nonlinearities develop. This investigation will determine the specific
localized nonlinearities which prevail when high circumferential bending stresses develop
along the corrugated profile. 'The development of such localized nonlinearities can be
examined if material and geometric nonlinearities are considered in the analysis by using
appropriate refined meshes. In addition, approximate analytical methods or experiments
may be used.
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Figure 11. Nonlinear behavior of the large building under wind loading
(reference velocity 90 mph).
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Figure 12. Nonlinear behavior of the intermediate building under balanced
snow loading, assuming symmetric mode with fixed base P, =
100 psf ground snow load).
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5 CRITICAL MOMENTS AND LOCAL BUCKLING

This chapter deals with the determination of the eritical moments, which are
defined as those moments which cause local buckling or cause a hinge to form, due to
compression in the seam or flanges of the section. The critical moments of a typical
panel of the corrugated shell and a typical straight panel were determined by analyzing
the panels as simple beam structures under concentrated loads (first as cantilever, then
as simply supported structures). The two finite element models were used in these
analyses. Full-scale tests performed on the same panel-beam structures provided
additional information which was used in determining the bounds of the criti.:al imoments,

The development of a collapse mechanism through the formation of hinges is
examined with the analysis and full-scale tests of an arch section of the intermediate
building, loaded under a line load at midspan. The critical moments determined with the
panel-beam structures are confirmed, and, in addition, the effect of initial imperfections

is assessed.

Critical Moments

In the panel cross section, the axial stresses which developed are the moment fiber
stresses due to the moment field. These stresses are expected to result in the same type
of localized nonlinear effects as in the case of the full arch shell structure. To
determine the critical moments at the fixed base of the arch, the panel-beam was
analyzed and tested as a cantilever beam; for the critical moments away from the base,
it was analyzed and tested as a simply supported beam. Since compressive stress can
develop either in the top fibers (seam) or the lower fibers (flange) of the typical panel
(Figure 2), two cases were analyzed: one with the load applied upwards (negative
moment) and one with the load applied downward (positive moment).

This study is complicated somewhat by the fact that the cross sections also have
minor corrugations in addition to the seams (Figure 3). Initially, no attempt was made in
the numerical analysis to model these minor corrugations with orthotropic properties,
because they are nonuniform along the cross section of the panel. Their effect was to be
evaluated by comparing the numerical results with the test results. However, they had
to be approximated later in the nonlinear analysis, because of problems encountered in
the course of the full-scale tests. In the case of the straight panel-beams, though, the
numerical analysis results can be compared directly with those of the full-scale tests
because straight panels have no minor corrugations. Details of the full-scale test
arrangements, loading procedures, and measurements will be discussed in a separate
technical report.

Cantilever Panel-Beam

A special case for the critical moment is the one which causes local buckling at the
region of a fixed boundary (base of the arch structure). Because of the fixed conditions
one would expect higher critical moments there than in regions away from the base. The
structure used to test this was a section of the intermediate building, simulating a
cantilever, curved panel-beam under concentrated load applied at the ridge of the free
end. A series of full-scale tests was performed with this structure. The critical
maoments obtained from those tests are considered to be upper bounds for the critical
moments that will cause local buckiing at the fixed base of the real arch structure.

25
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"‘.,: These experimental upper bounds are 3400 lb-in./in. for the critical positive moment
'\'a (from the most reliable test of the series) and 2400 lb-in./in. for the critical negative
" th moment (the minimum critical negative moment obtained from the tests).
= Because only upper bounds to the critical moments were obtained by the cantilever
B &:: beam tests, numerical analyses were also performed on a model of the same curved
O cantilever beam using eight 16-node Lagrangian elements.’® Two elements were used in
N the longitudinal direction (double the detailed model across the panel shown in
ey Figure 4). Symmetry was imposed along the center line between adjacent flanges and
": "' adjacent ridges for the critical negative and positive moments, respectively. This mode!
Tty does not include the effects of the minor corrugations. Those effects are examined
,—,.j- later. In addition, because of numerical problems encountered when beam elements were
o used to simulate the seam (due to the resulting extreme thickness ratio), truss elements
SN were used instead to model the seam section. This introduced some limitations to the
b validity of the model. Because of this approximation, the critical positive moment
(compression at seam) of 2200 lb-in./in. obtained at the fixed end of the beam is quite
et low. This eritical moment corresponds to buckling of the web plates rather than buckling
__.-:'_ of the seam "column-beam" supported by the web. The effect of the minor corrugations
:}‘;i- present in the web plates, however, would be to promote a "column-beam" type of
2 buckling of the seam. Therefore, the lower bound to the critical positive moment at the
0 ) fixed end will be assumed to be equal to the critical positive moment away from the
" base, as determined numerically in the next sections.
T
y ';_.{'_: Because of the unrealistic modeling of the cantilever beam with respect to the
-0 positive critical moment, the curved cantilever beam was analyzed again, with a
NN different mesh, using forty-eight 9-node Lagrangian shell elements?! while six beam
o elements were used to simulate the seam. Only geometric nonlinearities were considered
S because of a material nonlinearity option was not available for this element in FINITE.
. This did not introduce any major problems since it is easy to determine when yielding is
‘;::" reached at the ridge of the panel from the stress resultants obtained from the nonlinear
A analysis (large deformations). In this case, material failure is expected to initiate local
. D buckling of the section. Local buckling was not obtained in this case, probably because a
:: "N "perfect” section was modeled. Yielding was reached at the ridge level at a moment of
) 3500 lb-in./in. If minor corrugations are taken into consideration, this limit moment
o would be lower (discussed later). The.efore, a realistic upper bound to the ecritical
: - positive moment at the fixed base of the arch structure is M*__ = 3400 lb-in./in.; the
’.‘,&- value obtained from the tests of the cantilever beam. Thus, (ﬁle upper bound of the
critical positive moment at the fixed base is confirmed,
L} )
' However, the approximate modeling of the ridge section by truss elements is not
- expected to affect negative moment corresponding to local buckling of the flange. Thus
the negative critical moment obtained with the 16-node elements model, 1200 1b-in./in.,
::-::: is considered a reasonable lower bound. Note, however, that the effect of the minor
e corrugations on this lower bound is not included in this numerical analysis of the curved
o panel-beam. (It is considered later.)
~@e
73y, For a straight cantilever panel-beam, the critical positive and negative moments
syhai were found to be 1900 and 1000 lb-in./in., respectively. There were no minor corruga-
:::_:‘; tions to complicate the analysis in this case.
N
iy
" 9K. J. Bathe.
0 21L. A. Lopez.
e
X
1,450 26
]
,3.:
o RS LY S BT B SR CRE By A R yAR
B B A o N




':'ﬁ_
»_s,

RPN
A

X

S

Pt by bt
P
PP s

7’

L]

=

J The Simply Supported Panel-Beam

To study local buckling away from fixed boundaries, it was decided to model a
simply supported "beam" under two "third point" concentrated loads. Figure 15 shows the
typical panel. Conditions of symmetry were assumed along the longitudinal edges. The
finite element model employed, using FINITE, consisted of 48 Lagrangian shell elements
and six beam elements; the latter elements model the ridge of the panel. Two variations
Y of this model were used: a straight beam and a curved beam, both simply supported.

) Straight Beam, Simple Support

Figure 16 gives the test results obtained from a single straight panel-beam loaded
downward (positive moment). The letter "b" in the figure designates that lateral bracing
u:‘ was introduced at the ends of the beam to prevent warping. These results were
) "translated" to an equivalent span of 7 ft in order to make a direct comparison with the
numerical analysis results. The same figure shows the results obtained by the nonlinear
finite element analysis. The test and numerical analysis results agree well, as far as the
Y general behavior is concerned. In addition, the level of stress in the panel cross section
3 obtained numerically agrees with the test data (Figure 17), up to the point when
plasticity effects become evident in the full-scale test results. The test results indicate
that material failure initiates local buckling. Local buckling of the thin web and the
seam of the panel is the actual, final mode of failure of the beam. This was verified by
observation during the full-scale tests. Local buckling occurs when yielding is reached at
the ridge, as the stiffness of the panel-beam structure decreases.

,
LR IR

'Q‘ -

An initial imperfection in the panel cross section was introduced in the Finite
element model by assuming nonsymmetry in the web. In addition to this geometric
imperfection, a load imperfection was applied to introduce a nonsymmetric mode of
buckling. (As is the usual practice, 1/1000 of the applied load was assumed to act
laterally at the load point.) These two imperfections resulted in local buckling at a much
lower load compared to the "perfect" beam structure. Figure 18 presents the config-
uration of the panel cross section before and after the local buckling. Note that the
imperfection was assumed to be constant throughout the beam length. The straight panel
structure is therefore sensitive to initial imperfections. (A sensitivity analysis was not
performed at this point, because of cost and time limitations.) It must be emphasized
that the real structure is at least nonsymmetric (not perfect with regard to the finite
element model assumptions), due to the eccentric position of the seam with respect to
the web center line. Initial imperfections are always expected in a real structure, but
there is no predictable pattern to represent them.

LSRR

7
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To summarize, according to the numerical analysis, for an imperfect, straight
beam, the critical positive moment is shown to be 1900 lb-in./in. (a value which,
0 however, depends on the degree of imperfection). According to the test results, the
',. critical positive moment is found to be 2600 Ib-in./in.

™ Figure 19 presents the behavior of the straight panel under negative moment. In
XX general the curves of the full-scale tests and the numerical analysis agree well. Both
(o indicate a significant, shell-type behavior within the panel-beam structure. This is

RN evident from the differential displacement observed between the center line and the line
! of symmetry of the panel. The full-scale tests indicate that in this case the mode of
Y failure is not initiated by material failure (yielding at the ridge of the panel),

A major diserepancy is found in this case: the level of stress at the ridge in the
full-scale tests is shown to be ahbout half the corresponding level of stress found in the
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numerical analysis. Comparing the level of stress between Figures 16 and 19, one
concludes that the stresses calculated numerically are reasonable. At the same loading
level, in the linear elastic region, they are about the same magnitude with opposite sign,
as expected. Technical problems associated with the load application and the simulation
of the boundary and support conditions may have contributed to the unexpected behavior
of inis series of tests.

An abrupt change in the displacement of the flange is observed in the numerical
analysis curve obtained at p/pr = 1.5 (Figure 19), but it is restricted to the elements in
the region of the center line (midspan). This behavior indicates that local buckling might
occur at that level of loading if a finer mesh was used to model this region. The model
used, with six elements along half of the beam, eight elements along its width, and six
beam elements, probably could not model local buckling displacements restricted to a
very narrow area in the vicinity of the central line region. Note that according to the
observations made in the full-scale tests, this area was only 2 to 3 in. wide. The mesh
required to model such displacements would make the nonlinear analysis far too
expensive.

Curved Beam, Simple Support

Figure 20 shows the results of the full-scale tests on a curved panel-beam loaded
downward. As before, curves designated by "b" indicate lateral bracing imposed at the
ends of the panel, whereas "u" indicates that no bracing was used in that particular test.
As expected the panel-beams with no bracing failed at a lower load than the braced
ones. In the braced beams the level of stress at the ridge at failure indicates that
yielding initiated a combined mode of material and local buckling failure. In the
unbraced beams, yielding had not been reached at the ridge when the beams failed due to
local buckling. The fact that the braced beams did withstand higher loads than the
unbraced ones shows that the local buckling of the ridge-web area is directly related to
lateral buckling of the section as a whole.

There were some differences and inconsistencies in these full-scale tests that the
critical load (and so the critical positive moment) obtained from these tests is, in
general, about double the corresponding one for the straight panel-beam. Further, in
comparing the stresses at the ridge obtained from the straight and the curved beam
tests, it was found that the stress level at the ridge of the curved beam is lower than
that of the straight beam for the same moment. This behavior is the opposite of the
expected behavior. Another inconsistency is the stiffening effect observed in most of
the curves of the full-scale tests (Figure 20). These unexpected results are related to
problems associated with the simulation of the boundary and support conditions and with
the load application.

In the analysis of the curved beam, as for the straight beam, a load imperfection (a
horizontal force equal to 1/1000 of the applied vertical load) was introduced to initiate a
nonsymmetric mode of buckling. In this case, however, no initial geometric imperfec-
tions were assumed. The numerical analysis results for the curved beam differ from the
test results. The curved panel-beam seems to be stiffer than in the tests, probably
because the analysis did not account for minor corrugations, which would have reduced
the circumferential extensional and textural rigidity. The numerical analysis also
indicates that local buckling governs the mode of failure of the structure at a rather low
loading level. This load is comparable to the critical load obtained numericalily in the
case of the straight panel with initial imperfections.

28

.f.r..f

o o
"-f o "-

\r

Q

g

J "0 Gl tad ‘o‘ Y 'I o e‘o ) .‘i. X3 .' s:. Yatrats g HODAIXY

.l‘ 4‘. ‘ .‘

A e e A O R

W

3 AN i“




To further investigate the effect of the minor corrugations present in the web and
the flange of the panel, their equivalent orthotropic properties were calculated and
introduced in the finite element model.

These properties were derived according to the method presented by
Briassoulis.?? A triangular shape was assumed for the corrugations, and they were
considered to be uniform across the width of the flange and the web. These assumptions
constitute a simplifying approximation, but the objective was to confirm the tendency in
the behavior rather than to obtain exact analytical results. The results obtained are
shown in Figures 20 (the curve designated as orthotropic) and 21. As expected, the stress
at the ridge level is higher compared to the curved beam without minor corrugations, for
the same moment. In addition, the beam with the minor corrugations becomes softer.

Based on the numerical analysis results, it is clear that the critical positive
moment can not be greater than the one corresponding to a load »/p_ = 5. At this loading
level, the numerical analysis indicates that local buckling occurs in the isotropic beam
(no minor corrugations considered). Also, at the same loading level, yielding is reached
at the ridge of the panel when minor corrugations are included (approximated by
equivalent orthotropic properties). The presence of the minor corrugations does not alter
the positive critical moment in this case. Thus, it may be assumed that M* < 2300 Ib-
in./in. This critical moment is within the range of the critical moments +Stained with
the full-scale tests of the straight beam (2600 lb-in./in., p 27) and the nui::<rical analysis
results for the straight, simply supported beam (1900 lb-in./in.; imperfect beam, p 27).
This critical positive moment of 2300 lb-in./in. was also considered to be a reasonable
lower bound for the critical positive moment at the fixed base (curved, simply-supported
beam analysis). This is because the critical moment at the fixed base is expected, in
general, to be higher than the one away from the fixed base and also to be rather
insensitive to initial imperfections.

Figure 22 shows the test and numerical results of the curved beam under negative
moment. In this case, the mode of failure is governed by local buckling of the flanges,
which occurs at stresses less than the yielding stress at the ridge. The reduced
extensional stiffness of the flanges due to the presence of the minor corrugations
(Figure 21) is expected to have some effect on the critical load for local buckling
(compare with the straight beam). The behavior of all curved beams tested with negative
moment is consistent. This time the lateral bracing does not have any effect on the local
buckling. This was expected since local buckling now occurs at the flanges, where lateral
buckling does not exist. The displacement differentiation § , § was found to be
insignificant in the full-scale tests, while the analysis indicatds siénificant shell-type
behavior. In general, the full-scale tests indicate that the curved panel-beam is stiffer
when the load is applied upwards, which seems to be inconsistent. This, along with the
insignificant shell type behavior observed in this case, is attributed to similar problems
as were encountered in the two previous sets of tests. A lower critical load than the
ones indicated in Figure 22 is therefore quite possible (and should be expected).

The significant shell behavior observed with the nonlinear analysis is probably due
to the fact that the finite element mesh used was not fine enough in the region of the
center line to model local buckling. There, the localized, abrupt displacements, caused
by local buckling, occur in very narrow region of the flange. This was also the case with
the straight panel. It can be said that the numerical analysis did not succeed in obtaining
local buckling in the flange of the panel.

22D, Briassoulis, "Equivalent Orthotropic Properties of Corrugated Sheets."

29

WYy y
RO

A
N

T AN N AU I Y st A T Y 0 S T N T R P R 7 U AR R A b R L e e “mimn -
e A S e S o L T Y T O AN

gk%;“_g ) g.}%. o ' (P} 3] TN A\ ) ¥ N 9
SR GG L R Gl gt e eyt ‘:ss*'fl?;“f-x%.\"Ql%%?:,l?cfl‘:. ettt el 0 o il h":’"::‘ A ':"‘



'il'
& , h
.o".» & '.l NN .-. Wyl

Critical Negative Moments

At the Base

The critical negative moment of 1200 lb-in./in., obtained from the numerical
analysis of the curved cantilever beam (p 30) did not include the effects of the minor
corrugations. As it was shown before, the minor corrugations affect the negative
moments through a decrease of the corresponding stress developed at the flange plate, by
75 percent. Then, applying the factor 1.33 to account for this effect, one obtains a lower
bound to the critical negative moment at the fixed end of 1600 lb-in./in. An upper bound
to the critical negative moment of 2400 lb-in./in. was obtained from the full-scale tests
of the curved cantilever beam (p 26).

Away From the Base

The ecritical negative moments away from the base were not determined from
either the numerical analysis or the testing of the simply supported section. However,
because this type of buckling is restricted to a rather small region, the results obtained
for the cantilever beam can be used. Assuming that local buckling in the case of the
cantilever beam occurred within a distance of 10 in. from the fixed base, the corres-
ponding critical negative moment can be estimated by multiplying the moment at the
fixed end by 0.85. This factor corresponds to the moment at 8 in. from the base and is
based on observations made during the tests. Using the upper and lower bounds deter-
mined for the fixed base, the corresponding bounds away from the fixed base are esti-
mated to be 0.85 by 1600 = 1300 lb-in./in. (lower bound) and 0.85 by 2400 = 2000 lb-in./in.
(upper bound).

Local Buckling Considerations

In the numerical analysis discussed above, two critical moments (positive, negative)
were determined, corresponding to two distinct modes of local failure of the panel.
Local failure occurs at the ridge-web section under positive moments and at the flange
under negative moments. The mode of failure is local buckling in a field of positive
moment. This happens before yielding is reached at the ridge. In a field of negative
moment, loeal buckling occurs at the flanges, and it is not associated with material
failure (e.g., yielding at the ridge). Therefore, in the actual arch structure, both modes
should represent a local buckling type of failure, which, in the case of positive moment,
will be coupled with lateral buckling. In this last case, lateral restraint was shown to
increase the load capacity of the panel (full-scale tests).

The presence of minor corrugations across the flanges and the web of the curved
panel was shown to have some important effects on the structural behavior of the
panel. One such effect is the decrease in the stiffness of the structure, which resulted in
larger deformations. Specifically, in a positive moment field higher stress is required to
cause local-lateral buckling. Yielding may be reached at the ridge, initiating the mode
of local buckling failure. This corresponds to about the same moment as that which
resulted in local buckling of the ridge-web section in the case of a beam without minor
corrugations (away from the fixed base). In a negative moment field the stress level at
the flanges is reduced, for the same moment. This may be assumed to increase the
critical negative moment by a factor of 1.33, compared with the case when no minor
corrugations are present.
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The critical moments corresponding o local failure, as determined above, are used
in the following sections to determine whether hinges couid form in the structure and to
investigate for possible collapsing mechanisms. It must be clarified here that the hinge
formed in the panel after a local buckling type of failure is not equivalent to what is
known as "plastic hinge” in limit analysis of concrete and steel structures. The panel
will not keep its initial configuration after local buckling occurs at the ridge-web section
(positive moment). Figure 18 gives an idea of the type of iocal deformation of the panel
cross section. Severe deformations of the panel cross section of the same type were
observed at the regions where local buckling occurred during the full-scale tests (loading
downward, Figure 15). Since the bending rigidity of the panel comes primarily from its
geometric configuration, it is reasonable to assume that the moment capacity of the
panel at the section where local buckling occurs drops practically to zero. Of course, the
reduction of the moment capacity will be gradual after its initial drop and it will follow
the gradual formation of the hinge as the tilted web will further bend out of plane
tending to "sit"” on the flange. In addition, the deformation of the panel cross section
extends to some distance away from the section where local buckling occurred, damping
out gradually (Figure 18a). Hence, the equivalent orthotropic properties, and especially
the circumferential bending stiffness of the panel, are reduced nonuniformly in the
region surrounding the "hinge."

On the other hand, in a region of negative moment field, the flanges cannot carry
any stress at all in the section where they have buckled locally. Then, since the bending
stiffness of the web-ridge section alone is negligible, the "hinge" formed in a negative
moment field region is also assumed to carry a zero moment.

Approximate Analytical Formulas

Analytical expressions for buckling of plates under different boundary and loading
conditions can be used to obtain some indication of the expected critical moments for
the panel under investigation.

The analytical expression given by Timoshenko and Gere for a plate simply
supported along its longitudinal sides and placed under a stress distribution similar to the
one shown for the web plate in Figure 17, yielded a critical stress at the ridge of 26 ksi
that corresponds to a critical positive moment of 1900 lb-in./in., which is low compared
to the one obtained numerically (2300 lb-in./in. [p 29]). Of course, the web of the panel
is not simply supported, and the final local buckling mode of the ridge-web section is a
type of local-lateral buckling of the seam-web section. In fact, it was observed that in a
local-lateral type of buckiing, the seam behaves as a column-beam and the flange
behaves as a fixed base for the web plate. Therefore, the approximation of a simply
supported plate for the web should be used very carefully and only to obtain some rough
indication (conservative in this case) of the critical positive moment expected to cause
local buckling.

Timoshenko and Gere's analytical expression for a plate fixed at its two long-
itudinal sides and placed under compression can be assumed to model approximately the
behavior of the flange of the pane! in compression, under a negative moment field. The
corresponding critical stress to produce buckling at the flange is 2.0 ksi. The length of
the region over which local buckling occurs in this case is rather short. This is in
agreement with the observations made during the tests. The critical stress of 2.0 ksi at
the flange corresponds to a stress at the ridge level of 6.3 ksi and to a load of 540
Ib/panel, or p/p, = 1.4. This is in the range of the loading level at which the abrupt
change in the drisp]a('ement of the flange of the straight beam (loaded upwards) was
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observed (Figure 19). The analytical expressions for local buckling of a plate fixed along
its two longitudinal sides, simulating the flange of the curved panel, yield a critical
moment of 720 Ib-in./in. (due to higher flexural rigidity of the curved panel). The
corresponding local buckling develops in a rather short length of the flange, again
verified by observations during the tests. In conclusion, the approximate analytical
formulas for the determination of the critical negative moment yield conservative
results. However, they should be used carefully, and then only to obtain a rough
indication of the expected critical moments.

Arch Structure Under a Line Load

Numerical analysis was carried out for the intermediate sized arch under a line
load located at midspan. This was done in order to compare results with those of the
full-scale testing under similar conditions. The numerical analysis was carried out with
the same orthotropic model used to analyze the structure under snow and wind loading,
as discussed in earlier sections.

Figure 23 presents the numerical analysis results. In its initial condition, the arch
is analyzed with a fixed base. For a critical positive moment of 2300 Ib-in./in. (p 29) the
first hinge is expected to form at midspan, at a loading level of p/pr = 6.5. When this
hinge is formed, a moment redistribution takes place within the structure. The analysis
of the arch with its base fixed and with a hinge introduced at its top yielded the second
curve in Figure 23. The structure is much softer now, and a second hinge is expected to
form under the same critical negative moment. This moment however, corresponds to a
lower loading level than for the formation of the first hinge. Figure 24 shows the
moment distributions in half the arch, before and after the formation of the first hinge.
After the formation of the first hinge, the negative critical moment is reached at the
quarter point of the arch at nearly half the loading level at which the first hinge was
formed. Assuming that the load remains constant, the formation of the first hinge means
total collapse of the structure, causing a simultaneous formation of hinges at the quarter
points (see Figure 23).

Critical loads for the formation of the first and second hinges as measured in the
full-scale tests are shown in Figure 23. The deflection of the structure measured during
the tests was about three times as large as that obtained numerically. This is due to the
presence of the minor corrugations and the resulting reduction in circumferential
extensional rigidity of the real structure. Note that the same behavior was observed
during the beam tests (Figure 20), and it was also confirmed numerically with the
introduction of equivalent orthotropy in the flanges and web of the panel (Figure 20).

The critical positive moment away from the fixed base has been established
numerically as 2300 lb-in./in. In the full-scale tests, stress at the ridge at buckling was
measured to be in the vicinity of 30 ksi. The numerical analysis curves of Figure 20 give
a corresponding positive moment in the range of 1200 to 1800 Ib-in./in., depending on the
exact orthotropy introduced by the minor corrugations. The same level of moment is
shown to correspond to the arch tests shown by the curve of Figure 22. Hence the
critical positive moment of 2300 Ib-in./in. obtained numerically is confirmed to be a
realistic upper bound (when initial imperfections are discounted). It is also confirmed
that the critical positive moments established in the beam tests are too high.

The critical positive moments obtained in the full-scale tests of the arch were
found to be lower than the corresponding moments obtained numerically, for several
reasons. Symmetry conditions along the edges of the arch in the tests could be modeled
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only at discrete points. local buckling did not occur simultaneously in all four ridges of
the cross section (four panel arch), indicating some nonuniformity of the system. This
reflects the effeet ol the initial imperfections present in the shell and is in accordance
with the numerical analysis results of the perfect and imperfect straight beam
(Figure 16). Because th~ degree and pattern of potential initial imperfections in a real
structure cannot be - dicted, the minimum positive moment corresponding to the
formation of the first hinge, 1200 Ib-in./in. (Figure 23), can be considered as an
approximate lower bound on the critical positive moment, to account for initial
imperfections. This however, will not account for severe distortions of the panel
sections,

For the critical negative moments, the results of the full-scale tests correspond
well with the results of the numerical analysis. Earlier, the lower bound to the critical
negative moment for the panel section away from the fixed base was determined
numerically as 1300 Ib-in./in. In the full-scale tests of the areh, the critical negative
moment resulted in the formation of the second hinge at a quarter point of the arch.
Based on the moment distribution obtained numerically for an arch with a hinge at the
top, the critical negative moment developed in the tests is estimated to be in the range
of 1300 to 2000 lb-in./in. The critical stress at the extreme fibers (ridge) was found to
be an average of 35 ksi in the region where the second hinge was formed. This
corresponds to a negative moment of 2000 Ib-in./in. (Figure 22). By taking into account
the effect of minor corrugations on the stress distribution within the curved panel
(Figure 21), the corresponding stress is 0.75 by 35 ksi and the corresponding moment from
Figure 22 is 1700 lb-in./in. This moment is higher than the lower bound of 1300 1b-in./in., !
but close to the upper bound of 2000 Ib-in./in. determined previously.

[t must be emphasized here, that from Figure 23 it is not possible to determine
exactly the critical negative moment corresponding to the formation of the second hinge
during the tests. This is because the formation of the first hinge in the real structure
also affects the adjacent region of the arch by reducing the flexural rigidity of the panels
there. 5o, the moment distribution obtained by the analysis of the arch with a hinge
introduced at its top is not the exact distribution presented by the real structure. It is
shown however, to be a good approximation, adequately verifying the range of the
critical negative moment.

According to the resuits obtained then, the lower bound of the critical negative
moment of 1300 lb-in./in. (1600 lb-in./in. at the fixed end) established in earlier sections
(p 30) is a conservative estimate of the moment which will cause the flange of the panel
to buckle locally under a negative moment field. It will be shown however, that even
using & higher lower limit of 1500 Ib-in./in. (1700 lb-in./in. at the fixed base), which is
closer to the results of the arch tests, will not make any appreciable difference to the j
ultimate loads obtained. Note also that the upper bounds to the critical negative |
moment gre 2400 Ib-in./in. at the fixed base and 2000 lb-in./in. away from the fixed base !
(both obtained from the cantilever beam tests).

[n general, the results obtained by the full-scale tests verify the critical positive
and negative moments established previously, as upper and lower bounds respectively.
They also verify that hinges will form and that collapse mechanisms will cause the arch
structure to fail under different loading patterns. In conclusion, local buckling
establishes the ultimate loads for this type of structure through the formation of hinges.
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K Summary of Critical Moment Bounds

“y The investigation of the formation of collapse mechanisms in the arch structure is
Ok based on the bounds (limits) on the critical moments. These moments were established
and verified In the previous sections. Summarizing, the following conditions are
expected to be met for the formation of a hinge.

s.‘ 1. Positive moment fields

; : a. At fixed base

-t 2300 Per 3400+
: Mt Pr M*

b. Away from base

p
M 1200%* £r < 2300
\ + p +
M r M

2. Negative moment fields

¥ a. At fixed base

3 P w
’ -"t. 16(_)0 < cr o 2400
W M Pr -

I b. Away from base
?

“ 1300 Per 2000
" - p =

M r M

g *Determined from full scale tests.
' **This lower bound was obtained from full scale tests of the arch. It is conservative and

g includes the effects of regular initial imperfections but not the effects of excessive
) distortions.
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Fi Figure 15. Typical simply supported panel-beam under two concentrated
S ¥y loads applied downward and upwards, tested in a series of full-
N, scale tests, and analyzed numerically (L = 7 ft in analysis, L =
Mt 6 ft in tests).
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Stress distribution in a section of the straight panel according
to the numerical analysis and the full-scale tests (solid circles
indicate test results).
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Figure 18. Lateral-local buckling of the straight beam in the presence of

initial imperfections (numerical analysis): (a) lateral displace-
ment of the beam; (b) deformation of the cross section.
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Figure 19. Nonlinear analysis and full-scale test results of a straight

panel-beam, loaded upwards (numbers on the curves indicate
stress at the ridge in ksi).
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Figure 20. Nonlinear analysis and full-scale test results of a curved panel-
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at the ridge in ksi).
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Stress distribution in the curved panel, with and without minor
corrugations, modeled with isotropic and orthotropic shell
elements, respectively.

Figure 21.
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*Minor corrugations neglected.

Figure 22. Nonlinear analysis and full-scale test results of a curved panel-

beam, loaded upwards (numbers on the curves indicate stress
at the ridge in ksi).
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*Formation of first hinge according to critical positive moment

**Formation of first hinge according to full-scale tests.

Figure 23.

Figure 24.
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6 COLLAPSE MECHANISMS AND ULTIMATE LOADS

In this chapter the critical moments determined in Chapter 5 are used to determine
ultimate wind and snow loading conditions based on loadings determined in Chapter 2.
The method of analysis proceeds as follows. All critical loads corresponding to the
extreme moments in the moment distribution under investigation are determined. The
smallest of these loads defines the load at which the first hinge is expected to be
formed. If other critical loads are close to the governing one(s), a simultaneous forma-
tion of all these hinges is expected due to the moment redistribution which follows the
formation of the first hinge. Then, the governing critical loads define the bounds to the
ultimate load of the structure under the loading being considered. It will be shown in the
following sections that this is the case with the snow loading, balanced and unbalanced.
Collapse under wind loading may follow a different pattern, however.

Balanced Snow Load—Intermediate Building

Figure 25 presents the moment distribution in the intermediate arch structure
under the reference, balanced snow loading (100 psf ground snow load). To investigate
where the first hinge will form and under what snow loading level, all extremes of the
moment distribution are examined with respect to the bounds given in the previous

section.

Starting from the base, where a positive moment of 3000 Ib-in./in. develops, one
expects the critical load to cause local buckling at that region to be bounded by 0.77 <«
pcrp/ < 1.13. At the central region where the positive moment is 1500 lb-in./in., a hinge
shoulg be expected at a load of 0.80 « pcr/pr < 1.5. For the formation of a hinge at the
region of the maximum negative moment (approx. at quarter points), the critical load is
also bounded by a minimum: p,./p, > 0.81.

Therefore, taking the two lower bounds, one can predict that the lower limit of the
ultimate balanced snow load is in the range of p,. > 77 to 80 psf balanced snow load
(ground load). This corresponds to a simultaneous %rmation of hinges at the base and at
the quarter points (Figure 26a), and thus to instantaneous collapse of the structure.

In addition, taking the maximum limit for the formation of a hinge at the base, it
can be said that the critical balanced snow load is p,. < 113 psf balanced snow load
(ground load). One can therefore estimate the ultimate {)alanced snow load to be 77 psf
(conservatively), measured on the ground.

Note that the overall buckling of this structure, with hinges already formed at the
base, was found in earlier sections to be 280 psf. This is far beyond the limits which
govern the formation of collapsing mechanisms. Thus, it is confirmed that local buckling
is the key factor in the determination of the ultimate loads of this type of structure.

Balanced Snow Load--lLarge Building

The large building presents a very similar moment distribution to the one exhibited
by the intermediate building under balanced snow load, as expected (Figure 27). The
relative magnitudes of the moments however, are larger for the large building and this
results in much lower ultimate loads.




g
E

The critical load which will result in the formation of hinges at the base, where the
positive moment is 7000 lb-in./in., is bounded by 0.33 < Po < 0.49. Formation of a
hinge at the center line of the arch requires a critical loacf bounded by 0.30 < p, /p
0.58. At the quarter points, the negative moment of 4300 lb-in./in. indicates a crmcal

load which is p,,./p,. > 0.30.

Then, one can define the lower limits of the ultimate load to be p_, . > 30 to 33 psf
balanced snow load (ground load), and the upper limit of the ultimate load to be p p <49
psf balanced snow load (ground load). The ultimate balanced snow load in this case can
be assumed to be 30 psf (conservatively), measured on the ground.

Overall buckling of the large arch structure when hinges have already been formed
at the base was found earlier to be 73 psf. This is still outside the limits corresponding
to the formation of collapsing mechanisms. Therefore, a design consideration involving
overall buckling and hinge formation at the base of the arch could be used, but only for
very large buildings of the type under investigation.

Unbalanced Snow Load—Intermediate Building

Figure 28 presents the moment distribution within the intermediate arch structure,
under a combination of wind and snow reference load (100 psf snow load on the ground),
described as unbalanced snow loading.

At the fixed base where a maximum positive moment of 5500 lb-in./in. develops,
the critical load to cause formation of a hinge is found to be bounded by 0.42 < Pe /pr
0.62. A hinge can also be formed in the second region of extremal positive moment,
requiring that 0.35 < p,./p. < 0.68.

In the region where a maximum negative moment of 3000 lb-in./in. develops, away
from the base, the critical load is bounded by 0.43 < P /p < 0.66. Similarly, with a
negative moment of 3100 lb-in./in. at the base, the crltlcal lioad which will cause local

buckling is bounded by 0.51 < p,./p, < 0.77.

Hence, formation of hinges at the regions with the maximum negative moments and
the fixed base with the positive moment could occur almost simultaneously, with any one
of the three hinges being formed first to initiate the failure process (Figure 26b). Initial
imperfections may cause the first hinge to form at the region of the second maximum
positive moment. The bounds for the minimum ultimate unbalanced snow load which will
cause a collapsing mechanism to form are p_ . > 35 to 42 psf unbalanced snow load
(ground load), where the lower value accounts tcor initial imperfections and is considered

to be conservative.

The ultimate unbalanced snow load is not expected to exceed the maximum eritical
load corresponding to the formation of a hinge at the fixed base (positive moment):
p.. < 62 psf unbalanced snow load (ground load). The design unbalanced snow load can
then be estimated to be 35 psf (conservatively), measured on the ground.

Unbalanced Snow Load--Large Building
Figure 29 presents the moment distribution in the large building under unbalanced

snow loading. The magnitudes of the moments developed in the large building are rather
large compared to the ones of the intermediate building.
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At the base of the windward side, a positive moment of 11,700 Ib-in./in. results in
the formation of a hinge at a critical load bounded by 0.17 < p, /p < 0.29. In the region
of the second extremal positive moment, the corresponding posmve moment is bounded
by 0.14 < pcr/pr < 0.286.

At the base where a negative moment develops, a hinge is expected to be formed at
a critical load bounded by 0.17 < Peo /p < 0.34. At about the same lower bound of the
critical load (0.18), a hinge is expected to be formed in the region with the second
extremal negative moment of 7700 lb-in./in.

Therefore, the lower limit for the ultimate unbalanced snow load is found to be
p.. > 14 to 17 psf unbalanced snow load (ground load), where the lower value accounts for
initial imperfections and is considered conservative. In addition, the upper limit to the
ultimate load, corresponding to the formation of the first hinge at the region with the
second maximum positive moment, is p,. < 26 psf unbalanced snow load (ground load).
The ultimate unbalanced snow load, measured on the ground, is then assumed to be 14
psf, conservatively.

Wind Load

The wind loading case is analyzed first for the large building. In general, it is
expected that this type of loading may become critical only for large buildings.
Figure 30 presents the moment distribution in the large building under the wind reference
loading (90 mph). Obviously, significant moments develop only in the windward side of
the arch. The first hinge(s) are therefore expected to form in this region.

At the fixed base, for a negative moment of 3600 lb-in./in., the critical load is
bounded by 0.44 < p_./p. < 0.67. In the region with the maximum positive moment the
critical wind load to result in the formation of a hinge bounded by 0.63 < p < 1.20.
Therefore, the development of the first hinge is certainly expected at the fix (fbase of
the windward side. However, the formation of a collapsing mechanism is not obvious in
this case, because of the large difference between the critical moments corresponding to
the formation of the first and second hinges. Thus one cannot assume a nearly
simultaneous formation of more hinges after the formation of the first one, as was the
case with the snow load. Therefore, collapse of the structure is not imminent after the
formation of the first hinge, but a moment redistribution takes place, as shown in
Figure 30. Note that again the effect of the first hinge on the flexural rigidity of the
adjacent region of the panels is not taken into account in this analysis. So, the moment
distribution obtained after the first hinge forms is approximate, but it is considered
adequate for estimating the range of the ultimate wind load {or the arch structure. The
maximum positive moment after the formation of the first hinge becomes 4000 lb-in./in.
and the corresponding critical load is bounded by 0.30 < p/pcr < 0.58. At the region with
the maximum negative moment, the bounds are 0.65 <« p/pcr < 1.00.

Collapse of the structure is not possible unless the second hinge is formed. It is
therefore concluded that the ultimate wind load for the large building has a lower limit
corresponding to the formation of the first hinge, and an upper limit corresponding to the
formation of the second hinge, of V__ > 60 to 68 mph wind velocity. In addition, the
critical wind load (veloeity) can not exceed the upper bound for the formation of the first
hinge, which is V_,_ < 74 mph. [n this last case, collapse of the structure is imminent
after the formation of the first hinge.




For the intermediate building, the ultimate wind load is found in the same way to
be bounded by Vo > 87to 102 mph wind velocity. Again, the critical load can not exceed
the upper bound for the formation of the first hirge, whichis V< 110 mph. Formation
of the first hinge according to the upper bound of the critical wind load indicates
imminent collapse of the structure.

The Effect of Higher Critical Negative Moments

Higher lower bounds for the critical negative moment fields were indicated by the
arch tests, as discussed previously. However, the introduction of such limits (1500 and
1700 lb-in./in. instead of 1300 and 1600 lb-in./in.) resulted in minor changes. The values
which changed were the lower limit of the ultimate balanced snow load of the large
building and the lower limits of the ultimate wind loads for both buildings. The
corresponding ultimate load for balanced snow loading was found to be 33 psf compared
to 30 psf determined with the more conservative critical negative moments. The lower
limit to the ultimate wind load is found now to correspond to a wind velocity of 62 mph
compared to 60 mph determined previously. For the intermediate building, the lower
limit to the ultimate wind load is found to correspond to a wind velocity of 90 mph,
compared to 87 mph determined previously.

Hence, no major changes are observed from the two sets of values for the critical
negative moment fields. Note also that the upper bounds to the ecritical moments
established in the previous sections cannot be exceeded. These bounds however, may
yield ultimate loads on the unsafe side.
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Figure 25. Moment distribution in the intermediate building under the ref-
erence balanced snow loading. (Dashed line corresponds to the
moment distribution after the formation of hinges at the base.)
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Figure 26. Collapsing mechanisms for the intermediate (a-b) and the large
oY (c-e) buildings, under balanced (a,c¢), unbalanced (b,d), and wind
loading (e).
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7 CONCLUSIONS

The collapse loads of corrugated-steel, barrel-type shells, under snow and wind
loading conditions were determined in this study. The effect of local buckling was found
to be critical in determing the mode of failure and the corresponding collapse loads. The
orthotropy introduced by the geometry of the panels results in a significant increase of
the bending rigidity of the structures. As a result, high bending moments develop within
the structure under any type of loading. This, in turn, results in local buckling of the
ridge-web section of the panels, under a critical positive moment field, or in local
buckling of the fiange of the panels, under a critical negative moment field. Local
buckling is shown to govern the ultimate loading of these structures through the
formation of collapsing mechanisms. The critical positive and negative moment fields
under which hinges are formed determine the bounds to the critical loads which will
create the collapsing mechanisms. Overall buckling was not found to be a design
consideration for this particular type of structure. With a differenct profile of the panel
yielding a lower degree of orthotropy, overall buckling could become critical for large
building.

In regions where the design snow load is heavy, wind is also expected to be an
important design factor. The corresponding combination of snow and wind loading,
referred as unbalanced snow loading, governs the ultimate capacity of these buildings.
The ultimate unbalanced ground snow load is 35 psf for the intermediate building (50 by
18 ft high and 14 psf for the large building (72 by 26 ft high). Note that these ultimate
loads are conservative (lower limits).

In cases where snow is heavy but the structure is protected against the wind by
technical or physical means (e.g., walls, trees), the balanced snow load governs the
ultimate capacity of these structures. The ultimate balanced ground snow load is found
to be 77 psf and 30 psf for the intermediate and large buildings, respectively. Again,
these values are the lower limits of the ultimate load, thus they are conservative. The
above results imply that protection against the wind could make a significant difference
in the ultimate design load of these structures.

In most regions, whether or not snow load is considerable, wind load is always a
design consideration, especially for large buildings. The ultimate wind load is found to
correspond to a critical wind velocity with a lower bound of 60 to 68 mph and an upper
bound of 74 mph for the large building. For the intermediate building these limits
become 87 to 102 mph and 110 mph, respectively. Obviously, for smaller buildings, wind
load will not be a design factor.

Comparing these ultimate loads to the design loads given by the manufacturer,??
one concludes that whereas these structures operate safely under snow load, they may be
unsafe under wind load, depending on the building size. Thus, under the general assump-
tions of this analysis, the intermediate size building exhibits a factor of safety in the
vicinity of one for wind loading, while the large size building has a factor of safety of
less than one. Here it should be emphasized that the ultimate loads obtained in the
present study are based on the assumption of a long structure (e.g., length/radius > 4).
This suggests that for a medium length structure, where the effect of the end walls is not
negligible, the ultimate loads determined here should be considered conservative. In
addition, assumptions related to the quasistatic analysis for wind loading (e.g.,

¢?K-Span.
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exposure: see Chapter 2) may also contribute to a different actual wind pressure distri-
bution and so to a different ultimate wind load velocity. The assumptions made in the
present study are considered, for most cases, to be conservative.

Because of the rather low safety factor of the larger size buildings under wind
loading, as determined in this analysis, it is suggested that further research be performed
to determine the actual building response under wind loading.

METRIC CONVERSION FACTORS

1ft =0.305m
1sqft = 0.093 m?
1in. = 25.4 mm
1.61 km/hr
1 psf = 47.88 Pa
1 ksi = 6.895 MPa
1 lb-in./in. = 4,448 N

1 mph

49

i

ARG AL R PR YA AL .
it Voitelstetidetantatat it gty ‘ i lea¥ely
b . ,b!??“‘giotl :!iﬁz:‘."'.‘b,.,. 1 ‘\',’Q!'l,g.l_‘g ﬁ'.%‘vi‘-yﬁ ‘ g o -’sz,i"n !:’ ‘.":fl‘
Y W i L NS PR A

L AL
LSCANR N AR




Wmmmmﬁv"Wm- -...-._,‘-,v.._-...__I

REFERENCES

e O R T

ANSI Standard A58.1, Minimum Design Loads for Buildings and Other Structures (Amer-
ican National Standards Institute, Inc., NY, 1982).

N

’-: Bathe, K. J., A Finite Element Program for Automatic Dynamic Incremental Nonlinear

a Analysis, Report 82448.1 (Acoustics and Vibration Laboratory, Department of

Y Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA,

A 1975 [rev. 1978]).

v Briassoulis, D., "Analysis of the Behavior of Steel Silos Under Wind Loading," Ph.D.

K Dissertation, University of Illinois, Urbana, 1985,

",‘ Briassoulis, D., "Equivalent Orthotropic Properties of Corrugated Sheets," International
Journal of Computers and Structures, Vol 23, No. 2 (1985), pp 129-138.

" Billington, D. P., Thin Shell Concrete Structures, 2nd ed. (McGraw-Hill, NY, 1982).

") El-Atrouzy, M. N., and G. Abdel-Sayed, "Prebuckling Analysis of Orthotropic Barrel-

[ Shells," American Society of Civil Engineers Proceedings, Journal of the Structural

s Division, Vol 104, ST11 (1978), pp 1775-1786.

_, K-Span, Metal Building Data Manual (G. A. Kundson Ltd., Washington, DC).

3, Lopez, L. A., "FINITE: An Approach to Structural Mechanics System," International

Journal of Numerical Methods in Engineering, Vol 11 (1977), pp 851-866.

" Newberry, C. W. and K. J. Eaton, Wind Loading Handbook (Building Research Station,
o HMSO, London, 1975).

:‘ Parish, H.; "A Critical Survey of the Nine-Node Degenerated Shell Element With Special
t . g p
f; Emphasis on Thin Shell Application and Reduced Integration," Computer Methods in
Applied Mechanical Engineering, Vol 20 (1979), pp 323-350.
Sachs, P., Wind Forces in Engineering, 2nd ed. (Pergamon Press, 1977).
4 g
l: Timoshenko, S. P., and J. M. Gere, Theory of Elastic Stability, 2nd ed. (MeGraw-Hill, NY,
" 1961).
q
;
)
I..
W
‘ot
‘l
49
; 50
4

QU SRNRINAS i St w M
'\ s ; (XA A
b zb.ue o, "'“; BAT A RA KRN

ANt e ﬂ.wq"ohh’n



) USA-CERL DISTRIBUTION

L

0

w Chief of Engineers

N ATTN: Tech Monitor
Q ATTN: CEIM-SL  (2)
j ATTN: CECC-P

ATTN: CECW
.. AT N: CECW-0
.“ ATTN: CECW-P
N ATTN: CEEC
ATTN: CEEC-C
: ATTN: CEEC-E

f'a! ATTN: CERD

) ATTN: CERD-C
o ATTN: CERD-M
o ATTN: CERM

" ATTN: DAEN-ZCE
, ATTN: DAEN-ZCF
K ATTN: DAEN-ZCI

ATTN: DAEN-ZCM
ATTN: DAEN-ZCZ

W

oy FESA, ATTN: Library 22060
- ATTN: DET III 79906

KK
%

US Army Engineer Districts
ATTN: Library (41)

»

A'é

,‘ US Army Engineer Divisions
;.' ATTN: Library (14)

A

AMC - Dir., Inst., & Serve
X ATTN: DEH (23)

-~

h ATTN: AMCEN-A

! FORSCOM

‘ FORSCOM Engr, ATTN: AFEN-DEH

¢ ATTN: DEH (23) 5
|
3 TRADOC |
o HQ, TRADOC, ATTN: ATEN-DEH i
" ATTN: DEH (19) |
CRREL, ATTN: Library 03755

P WES, ATTN: Library 39180

'@

% NCEL

M ATTN: Library, Code LOSA 93043

: Defense Technical Info. Center 22314

! ATTN: DDA (2)

)

.0

%

®

.
Ry p— . DO PN Y, ~
DA O ‘x‘» 2 ““s‘"l‘.‘n"'c‘ l""“"“a "‘ s ‘t'»’“ “ “‘a“'«"'a“it :'.“'? '1 ."."I':“‘\.:‘t"'i""w' ,"‘Erf*...‘ RNt

S s . 0 i : g ity g AN )




TR St ST T )
- ) ]
DA AL l‘»‘";:l‘ t' o

'}ﬂw ) 'C S "\-"-\-“' ?}*-,,.a <4

g

()
o HE, ‘l .' 5“ Al '. A

. i a« ..“'.:.,

el B R el X EER A A SO A R SN

L, -y

-

-
.

-~ o -

A e b 8o = R

PRl

?f
:‘
¢
&




